您好,欢迎来到一带一路数据库!

全库
全文
  • 全文
  • 标题
  • 作者/机构
  • 关键词
  • 主题词
  • 摘要
高级检索
热词推荐: 能源基础设施

深度学习框架及其发展形势的思考

文章摘要

深度学习框架下接芯片、上承应用,为模型的开发、训练和部署提供系统的支撑,极大地加速人工智能创新研发与应用,其作用类比人工智能时代的操作系统。本文对深度学习框架发展现状、核心技术及生态要素进行深入调研分析,从人工智能产业化需求、软硬件适配与融合优化、大模型快速发展及科学计算前沿交叉领域等不同视角,剖析深度学习框架发展趋势及面临的挑战,并从加速深度学习框架与硬件的适配融合、支持国内主流深度学习框架推广、发挥深度学习框架对AI for Science的支撑作用、加快发展国产深度学习框架生态等方面提出对策建议。

Abstract

Deep Learning Frameworks serve as a critical bridge between low-level AI hardware and user-facing AI applications by providing essential building blocks for designing,training,and deploying deep learning models. Similar to how operating systems underpin software development in the desktop and mobile era,deep learning frameworks support and drive AI research and innovation. This paper presents a comprehensive survey of the current state of deep learning frameworks,covering their core technologies and ecosystems. It provides an in-depth analysis of the latest trends and challenges in deep learning frameworks,from various perspectives such as industrial applications of AI,hardware-software integration and optimization,recent advances in Large Language Models (LLM),and interdisciplinary frontiers of scientific computing. Furthermore,the paper offers several recommendations to accelerate hardware-software integration for deep learning frameworks,promote the growth of Chinese deep learning frameworks,support cutting-edge initiatives such as AI for Science,and strengthen the Chinese deep learning framework ecosystems.

作者简介
马艳军:马艳军,博士,百度深度学习技术平台部高级总监、百度AI技术生态总经理,教授级高工,主要研究方向为自然语言处理及深度学习,相关研究成果在百度产品中广泛应用。
于佃海:于佃海,硕士,百度飞桨总架构师、百度集团机器学习平台TOC主席,教授级高工,整体负责飞桨平台的核心技术,长期从事自然语言处理、机器学习、深度学习相关的技术研发应用和平台建设工作。